NGVAMERICA

Natural Gas Vehicles for America

Make a Bold Impact on Air Quality Today

Natural gas vehicles can transform our nation's medium- and heavy-duty transportation sector & are the most cost-effective choice for VW settlement funds.

About NGVAmerica

NGVAmerica is the national organization dedicated to the development of a growing, profitable, and sustainable marketplace for vehicles powered by natural gas and for using more natural gas in transportation.

200+

NGVAmerica represents 200+ companies, LDCs, fleets, OEMS, environmental and government organizations.

The Problem

Urban Emissions & Public Health

Urban Emissions: Leading Sources

Source: DTF Analysis on HIS Vehicles in Operation Data, December 2015

166 Million

≈ **50%**

of Americans live in areas with air that is unhealthy to breathe

Source: American Lung Association's "State of the Air 2016"

Urban Emissions: Public Health Impacts

Breathing in particle pollution increases the risk of:

- Asthma
- Lung Cancer
- Heart Disease
- Premature Death

The Opportunity

Volkswagen Environmental Mitigation Trust Funding

\$2.9 Billion Volkswagen Environmental Mitigation Trust

Funding must be used to:

- Address excess nitrogen oxide (NOx) emissions through vehicle purchases/ repowers
- Benefit residents in areas with greatest need (e.g., near urban/industrial areas)
- Replace polluting diesel equipment with cleaner, new or repowered vehicles, including:
 - Local freight trucks
 - Transit buses
 - School buses
 - Shuttle buses
 - Refuse trucks

Funds for Each State (\$2,925,000,000)

Initial Subaccounts	Combined Totals
Alaska	\$8,125,000.00
Hawaii	\$8,125,000.00
North Dakota	\$8,125,000.00
Puerto Rico	\$8,125,000.00
South Dakota	\$8,125,000.00
Wyoming	\$8,125,000.00
District of Columbia	\$8,125,000.00
Delaware	\$9,676,682.97
Mississippi	\$9,874,413.91
West Virginia	\$12,131,842.13
Nebraska	\$12,248,347.48
Montana	\$12,602,424.88
Rhode Island	\$14,368,857.94
Arkansas	\$14,647,709.09
Kansas	\$15,662,238.80
Idaho	\$17,349,037.39
New Mexico	\$17,982,660.90
Vermont	\$18,692,130.18
Louisiana	\$19,848,805.30

Initial Subaccounts	Combined Totals
Kentucky	\$20,378,649.58
Oklahoma	\$20,922,485.12
lowa	\$21,201,737.70
Maine	\$21,053,064.48
South Carolina	\$33,895,491.39
Nevada	\$24,874,024.48
Alabama	\$25,480,967.86
New Hampshire	\$30,914,841.09
Utah	\$35,177,506.14
Indiana	\$40,935,880.59
Missouri	\$41,152,051.74
Tennessee	\$45,759,914.40
Minnesota	\$47,001,661.43
Connecticut	\$55,721,169.94
Arizona	\$56,660,078.00
Georgia	\$63,624,725.56
Michigan	\$64,807,014.63
Colorado	\$68,739,918.33

Initial Subaccounts	Combined Totals	
Wisconsin	\$67,077,457.70	
New Jersey	\$72,215,085.39	
Oregon	\$72,967,518.46	
Massachusetts	\$75,064,424.40	
Maryland	\$75,714,238.01	
Ohio	\$75,302,522.67	
North Carolina	\$92,045,658.00	
Virginia	\$93,633,980.48	
Illinois	\$108,679,676.98	
Washington	\$112,745,650.15	
Pennsylvania	\$118,569,539.52	
New York	\$127,701,806.94	
Florida	\$166,278,744.54	
Texas	\$209,319,163.57	
California	\$422,636,320.14	
Tribal acct	\$54,447,921.22	
Tribal Admin Cost	\$1,088,958.42	
Trust Admin Cost	\$29,250,000.00	

The Solution

Natural Gas Vehicles: Sustainable, Responsible, Available

NGVs Offer Unmatched Emission Reduction Benefits

The cleanest heavy-duty truck engine in the world is powered by natural gas

 Certified in 2015 by the U.S.
 Environmental Protection Agency and California Air Resources Board

The Cummins Westport Ultra-Low NOx engine is certified to a 0.02 g/bhp-hr standard, which is:

- 90% cleaner than the EPA's current NOx standard
- 90% cleaner than the latest available diesel engine

Cummins Westport Optional Near Zero Product Line

ISB6.7 G

6.7L

- Spark Ignited, SEGR, TWC
- Peak Rating: 240 hp
- 560 lb-ft torque
- 33,000 lb. GVW
- School bus/Shuttle bus/Sweeper/Yard spotter
- 0.1 g/bhp NOx Available Now

ISL G

8.9L

- Spark Ignited, SEGR, TWC
- Peak Rating: 320 hp
- 1000 lb-ft torque
- 66,000 lb. GVW
- Refuse/Transit/Regional P&D Truck/Mixers
- NZ Available Now

11.9L

- Spark Ignited, SEGR, TWC
- Peak Rating: 400 hp
- 1450 lb-ft torque
- 80,000 lb. GVW
- Regional Haul Truck/Tractor/Refuse
- NZ Available Q1 2018

In-use testing results of heavy-duty trucks in port applications found:

» Natural gas vehicles emitted <u>lower NOx:</u>

The ISL G natural gas engine emitted lower NOx emissions than its EPA certification standard. Emissions decreased as the duty cycles decreased (i.e., slower speeds, idling, stop-andgo traffic).

» Diesel vehicles emit up to 5x more NOx:

2010 diesel engines with SCR emitted up to 5 times more NOx emissions than its EPA certification standard. Emissions increased as the duty cycles decreased.

UCRIVERSITY OF CALIFORNIA CE-CERT

Comparing NOx Emissions in Port Truck Operations

Fueling with natural gas reduces CO₂ and greenhouse gas emissions

Renewable natural gas (RNG) provides even greater CO, and greenhouse gas emission reductions

Carbon Intensity Rating of Key Transportation Fuels

Transportation Fuel	EER-Adjusted Carbon Intensity
Diesel (conventional)	102.01
Natural gas (conventional)	88.60
Hydrogen (from natural gas)	55.61
Electricity (California grid)	38.95
RNG - Landfill gas	33.89 to 65.64
RNG - Wastewater blogas	8.61 to 34.36
RNG - Food/green waste blogas	-25.48
RNG – Dairy biogas (prospective)	-303.30

WTW Greenhouse Gas Emissions Reductions

Compared to Diesel:

What does this really mean?

NGVs + RNG offer the <u>cleanest</u> commercially available path to reduce heavy-duty vehicle emissions

(for likely a decade or more).

NGVs Maximize the Impact of Available Funding

Short/Regional Haul Truck Comparison – 100% Funding Scenario

Natural Gas

Diesel

Technology Cost \$100,000 NOx Reduced 1,858 lbs

Electric

Technology Cost \$324,000 NOx Reduced 3,810 lbs

Data Source: NOx emissions are based on low-NOx natural gas engines. EV emissions are the same as natural gas emissions based on the inclusion of power plant emissions, EPA MOVES emission factors for 2017 diesel vehicle, and EPA MOVES for 2007 replacement diesel vehicles. Useful life, cost and mileage vary by applications. Additional details available from NGVA upon request.

Dollar-for-Dollar, NGVs Deliver the Largest & Most Cost-Effective NOx Emissions Reductions

Refuse Comparison – 100% Funding Scenario

Natural Gas

per lb of NOx

Diesel

Technology Cost \$270,000 NOx Reduced 1,417 lbs

Electric

Technology Cost \$670,000 NOx Reduced 2,141 lbs

Data Source: NOx emissions are based on low-NOx natural gas engines. EV emissions are the same as natural gas emissions based on the inclusion of power plant emissions, EPA MOVES emission factors for 2017 diesel vehicle, and EPA MOVES for 2007 replacement diesel vehicles. Useful life, cost and mileage vary by applications. Additional details available from NGVA upon request.

Dollar-for-Dollar, NGVs Deliver the Largest & **Most Cost-Effective NOx Emissions Reductions**

School Bus Comparison – 100% Funding Scenario

\$291 per lb of NOx

Natural Gas

Diesel

Technology Cost \$115,000 NOx Reduced 396 lbs

Electric

Data Source: NOx emissions are based on low-NOx natural gas engines. EV emissions are the same as natural gas emissions based on the inclusion of power plant emissions, EPA MOVES emission factors for 2017 diesel vehicle, and EPA MOVES for 2007 replacement diesel vehicles. Useful life, cost and mileage vary by applications. Additional details available from NGVA upon request.

Dollar-for-Dollar, NGVs Deliver the Largest & Most Cost-Effective NOx Emissions Reductions

Transit Comparison – 100% Funding Scenario

\$273
per lb of NOx

Natural Gas

\$540 per lb of NOx

Diesel

Technology Cost \$300,000 NOx Reduced 555 lbs

Electric

Technology Cost \$750,000 NOx Reduced 1,318 lbs

Data Source: NOx emissions are based on low-NOx natural gas engines. EV emissions are the same as natural gas emissions based on the inclusion of power plant emissions, EPA MOVES emission factors for 2017 diesel vehicle, and EPA MOVES for 2007 replacement diesel vehicles. Useful life, cost and mileage vary by applications. Additional details available from NGVA upon request.

Dollar-for-Dollar, NGVs Deliver the Largest & Most Cost-Effective NOx Emissions Reductions

18–24 month payback

Lower Fuel Costs:

Can be >\$1.00/gallon cheaper

Depending on range and application, fleets can realize a pay back in as little as 18–24 months due to:

- Lower fuel costs
- Lower maintenance costs

NGVs are Road-Tested & Commercially Available

Available from OEMs with established sales and service networks

HD Vocational OEMs

- Autocar Truck
- Capacity
- Crane Carrier
- Elgin
- Johnston
- Kalmar
- Mack
- McNeilus
- Peterbilt
- Power Solutions Int'l
- Schwarze
- Tymco

HD OEMs

- Cummins Westport
- Freightliner
- Kenworth
- Mack
- Peterbilt
- Volvo

HD Bus OEMs

- Blue Bird Bus
- DesignLine
- El Dorado
- Gillig
- New Flyer
- New Flyer/NABI Bus
- NOVA Bus
- Motor Coach Industries
- Thomas Built Bus

HD Retrofit/ Repowers

- American Power Group
- Clean Air Power
- Diesel 2 Gas
- Fyda Energy Solutions
- NGV Motori
- Omnitek Engineering

MD Retrofits

- AGA Systems
- Altech-Eco
- Crazy Diamond Performance
- Greenkraft
- Landi Renzo USA/Baytech
- M-Tech Solutions
- Nat-G
- NGV Motori USA
- PowerFuel Conversions
- Roush CleanTech
- STAG
- Westport Fuel Systems
- Zavoli

Fuel Systems

- Agility Fuel Solutions
- Momentum Fuel Technologies
- Mainstay

Class 4-6 Vehicles and **NGV** Availability

Class Four: 14,001 - 16,000 lbs.

City Delivery Conventional Van

Landscape Utility

Class Five: 16,001 - 19,500 lbs.

Class Six: 19,501 - 26,000 lbs.

Single Axle Van

Class 4-6
Vehicles and
NGV Availability

Class 7-8 Vehicles and **NGV** Availability

Class Seven: 26,001 - 33,000 lbs.

City Transit Bus

High Profile Semi

Home Fuel

Class Eight: 33,001 lbs. & over

Dump

Fire Truck

Fuel

Refrigerated Van

Semi Sleeper

Tour Bus

Heavy Semi Tractor

Class 7-8
Vehicles and
NGV Availability

School/Transit Bus and NGV Availability

Refuse Vehicles and NGV Availability

Non-Road, High Horsepower Applications

Non-Road, High Horsepower Applications

NGVs are roadtested, proven technologies that are operating worldwide

Data Source: NGVGlobal, December 2016

Several highprofile fleet operators use NGVs in daily operations

Advantages of Natural Gas as a **Transportation Fuel**

Abundant Domestic Availability, Widespread Distribution Infrastructure, Low Cost and Price Stability

North America has an abundant domestic supply of conventional natural gas

North America
has abundant
sources of
renewable
natural gas that
can be harnessed

66.5 MILLION TONS/YEAR

17,000 FACILITIES

AGRICULTURAL WASTE

8,000 LARGE FARMS AND DAIRIES

LANDFILL GAS

1,750 LANDFILLS

RNG PRODUCTION FOR TRANSPORTATION FUEL

Renewable natural gas production is steadily increasing to meet growing demand throughout the U.S.

Natural gas fuel station infrastructure is continually expanding

≈2,000 Natural Gas Stations

- More than doubled past 5 years
- 10-12+ new stations per month

Diverse network of natural gas station developers

- Natural gas retail fuel sellers
- LDCs
- C-Stores
- Truck Stops
- Grocery/Warehouse stores
- Leasing companies
- Gas exploration & production
- Midstream pipeline

The U.S. natural gas pipeline system is well poised to support a national network of CNG and LNG fueling stations

2.5+ million

miles of U.S. pipeline infrastructure

Projected Fuel-Price Differential

(prices per \$DGE)

Natural Gas Provides Long-Term Fuel Cost Savings

Source: U.S. Energy Information Administration

Natural Gas vs. Oil:

- 3:1 price advantage over oil on a Btu basis
- Pump prices \$0.75 to \$1 lower than diesel

Natural Gas Provides Fuel Price Stability

Natural Gas:

- Decades of affordable domestic reserves
- Natural gas sourced from North America
- Commodity cost makes up 23% of sales price

Diesel:

- History of volatile price swings
- Crude oil sourced fuel from high-conflict regions
- Commodity cost makes up 60% of sales price

Natural gas vehicles are up to 3x quieter than their diesel counterparts and significantly reduce <u>noise</u> pollution in the local community.

Conclusion: NGVs are the Best Value for State VW Funds

NGVAmerica Recommendations

- Fund <u>alternative</u> fuel vehicle projects that maximize NOx reductions for the funds spent for both public and private fleets
- ✓ Provide greater funding for MD & HD vehicles powered or repowered by engines that deliver NOx reductions greater than current EPA standards
- ✓ Target funding for technologies that have demonstrated <u>lower in-use</u> emissions
- ✓ Prioritize funding for projects with commercially <u>available</u> products
- ✓ Stay flexible in plans and <u>leverage private investment</u> to stretch dollars and get more <u>alternative</u> vehicles on the road

For more information:

Jeff Clarke – jclarke@ngvamerica.org Sherrie Merrow – smerrow@ngvamerica.org

Visit: www.ngvamerica.org

Natural Gas Vehicles for America

